Fast Charge New Discovery - Layered Crystal Tungsten Oxide Hydrate

How can battery researchers store and move energy more quickly, if they want to extend the life of batteries? The researchers at North Carolina State University want to find the answer. Researchers at the North Carolina State University have developed a material known as layered crystal tungsten oxide hydroxide, which adjusts charge transfer rates by using a thin layer water.
The study was published recently in Chemistry of Materials. The previous research shows that crystalline Tungsten Oxide is a type of battery material which has a large storage capacity, but it is not very fast in terms of energy storage. The researchers compared crystalline and layered crystalline oxide hydrate, two high density battery materials. The layered crystalline titanium oxide hydrate is composed by a crystalline layer of tungsten dioxide separated by an aqueous or atomic layer. Researchers found that when charging two materials for ten minutes, normal tungstenoxide stored more energy than the hydrates. But, after 12 seconds of charging, the hydrates stored more energy than the crystalline material. Researchers also found that hydrates can store more energy and also reduce waste heat.

NCSU anticipates that a battery layered with crystalline tungsten dioxide hydrate will accelerate electric vehicles more quickly. Currently, the technology isn't flawless. After 10 minutes, the normal tungsten-oxide battery actually has more energy. The technology still has its place, and automakers are able to offer more options in nonlinear accelerators, which will help them achieve zero emission vehicles.

In addition, Zhao Zhigang Group of Suzhou Institute of Nanotechnology (SIN) and Qi Fengxia Group of University of Suzhou developed jointly a type of tungsten dot quantum electrode material with an ultra-fast response electrochemically. The results of the study were published recently in Advanced Materials, an international journal.

Researchers and companies have focused on the potential of new energy conversion and storage technologies, including supercapacitors, fuel cells and lithium-ion battery technology, to help solve problems such as energy shortages, unstable sources of renewable energies, and energy shortages. The goal of people is to achieve fast and efficient electron transport processes and ion transport in electrode materials. This is also the key technical issue that will improve the performance related devices.

The small size of quantum dots, their large surface area, high surface atomic proportion, and the fact that they are zero-dimensional nanomaterials, means the material is in contact with electrolyte, has a short ion diffusion range, and can be used as an electrode. Electrode material. Quantum dots are not very effective in electrochemistry. This is mainly due to their poor electrochemical properties, surface organic coatings and high interfacial friction between particles.

Zhao Zhigang’s and Yan Fengxia’s research groups have been working on this topic and have made major breakthroughs on the electrochemical application of tungsten dioxide quantum dots. The group used a tungsten based metal organic compound as a pre-cursor, a single fat amine as the reactant and solvent and obtained a uniform size. They observed a strong quantum effect and solved the tungsten dioxide quantum. The point can be difficult to obtain. It must be obtained by using a lattice (silica, molecular Sieve).

By using ligand exchange, the researchers demonstrated that quantum dots can also be used to test electrochemical properties of materials like tungsten dioxide and other inorganic electrodechromic materials. In the future, quantum dot material will be widely used for ultra-fast reaction electrochemical devices.
Tech Co., Ltd. is a manufacturer of professional silver nanoparticles. We have over 12 years in research and product development. You can contact us to send an inquiry if you are interested in high quality tungsten.


Inquiry us

Our Latest Products

High Purity 3D Printing Nickel Alloy IN718 Powder

In718 Powder is widely used for industrial and aviation turbo-propellers, petrochemical, nuclear reactors, and laser cladding.Particle Size: 15-45mm; 15-53mm; 53-120mm and 53-150mm 3D Printing Nickel Alloy Inconel 718 Properties: Nickel Alloy IN…

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

Tungsten-nickel-copper/iron alloy is characterized by low thermal expansion, high density, radiation absorption and high thermal and electrical conductivity. It is widely utilized in the aerospace and medical industries. About High Density Tungsten…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the energy, petrochemical, e-commerce, and electronics indus…

0086-0379-64280201 brad@ihpa.net skype whatsapp